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Abstract
We use a discrete multiscale analysis to study the asymptotic integrability
of differential–difference equations. In particular, we show that multiscale
perturbation techniques provide an analytic tool to derive necessary
integrability conditions for two well-known discretizations of the nonlinear
Schrödinger equation.

PACS numbers: 02.30.Ik, 02.30.Jr

1. Introduction

The nonlinear Schrödinger (NLS) equation,

i∂tf + ∂xxf = σ |f |2f, f = f (x, t), σ = ±1, (1)

is a universal nonlinear integrable partial differential equation for models with weak nonlinear
effects. Here, x is the spatial variable and t is the time, while ∂ denotes differentiation with
respect to its subscript. It has been central for almost 40 years in many different scientific
areas, and it appears in several physical contexts; see for instance [4, 5, 29].

In [33], Zakharov and Shabat proved its integrability by solving its associated spectral
problem. From the integrability of equation (1) it follows the existence of infinitely many
symmetries and conservation laws and the solvability of its associated Cauchy problem. In
correspondence with its symmetries one finds an infinite number of exact solutions, the
solitons, which, up to a phase, emerge unperturbed from the interaction among themselves.

The problem of the discretization of the NLS equation has been the subject of an intensive
research. In literature, one may find a few discretizations of the NLS equation. An integrable
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differential–difference equation discretizing equation (1) has been found by Ablowitz and
Ladik [2]. It reads

i∂tfn +
fn+1 − 2fn + fn−1

2h2
= σ |fn|2 fn+1 + fn−1

2
, (2)

where n ∈ Z and 0 < h < 1 is a parameter related to the space discretization. As one can
easily see, in the limit h → 0, equation (2) goes into the NLS equation (1). Equation (2)
admits a Lax pair and consequently it has an infinite number of generalized symmetries and
local conservation laws, which provide explicit soliton solutions [4].

From the applications’ point of view of, the most relevant differential–difference NLS
equation is given by

i∂tfn +
fn+1 − 2fn + fn−1

2h2
= σ |fn|2fn. (3)

Equation (3) is one of the most studied lattice models (see for instance [1, 4, 9, 13–15]
and references therein). Its study has a long and fascinating history, beginning in the 1950s
in solid state physics with Holstein’s model for polaron motion in molecular crystals [19] and
later appears in biophysics with Davydov’s model for energy transport in biomolecules [28].
Among the many recent applications of equation (3), let us just mention the theory of Bose–
Einstein condensates in optical lattices [1] and semiconductors [15]. Its continuous limit goes
again into the integrable NLS equation (1). The discrete NLS equation (3) possesses exact
discrete breather solutions [14], and just a few number of conserved quantities and symmetries
are known. Numerical schemes have been used to exhibit its chaotic behavior [3]. A proof
of its non-integrability, based on multiscale techniques, has been recently presented by the
authors in [26].

By introducing the parameter s = 0, 1, the discrete NLS equations (2)–(3) may be
combined in the equation

i∂tfn +
(fn+1 − 2fn + fn−1)

(
1 − sσh2|fn|2

)
2h2

= σ |fn|2fn. (4)

The case s = 1 corresponds to equation (2), while the case s = 0 gives equation (3).
Multiscale analysis [30, 31] is an important perturbative method for finding approximate

solutions to many physical problems by reducing a given partial differential equation to a
simpler equation, which can be integrable [8]. Multiscale expansions are structurally strong
and can be applied to both integrable and non-integrable systems. Zakharov and Kuznetsov
[32] have shown that, starting from an integrable partial differential equation and performing
a proper multiscale expansion, one may obtain other integrable systems. In particular, they
showed that the slow-varying amplitude of a dispersive wave solution of equation (1) satisfies
the Korteweg–de Vries (KdV) equation, and vice versa.

Let us give a sketch of their derivation, showing how to obtain the KdV equation as the
lowest order of the multiscale expansion of the NLS equation (1) with σ = 1, the so-called
repulsive NLS equation. To do so one separates the complex field f in its amplitude and
phase, f (x, t) = [ν(x, t)/2]1/2 exp[iφ(x, t)] and rewrite the NLS equation as the system of
the real partial differential equations

∂tνt + ∂x(νϕ) = 0, (5)

∂tϕ + ϕ∂xϕ + ∂xν = 1
2∂xν

−1/2∂2
x ν1/2, (6)

where ϕ = ∂xφ. For long waves and small perturbations around the equilibrium solution of
equation (1), we can define the following formal perturbation expansions:
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ν(x, t) = 1 +
∞∑
i=1

ε2iν(i)(x ′, t ′), (7)

φ(x, t) = −t +
∞∑
i=1

ε2i−1φ(i)(x ′, t ′), (8)

where ε is a small perturbation parameter and x ′ = ε(x − t) and t ′ = ε3t are suitable slow
variables. By inserting expansions (7) and (8) into equations (5) and (6), a direct computation
shows that the lowest nontrivial order of the perturbation, that is ε3, provides an evolution
equation for the field ν(1) wrt the slow time t ′:

∂t ′ν
(1) + 3

2ν(1)∂x ′ν(1) − 1
8∂3

x ′ν
(1) = 0,

that is a KdV equation.
In [8], Calogero and Eckhaus have used the multiscale technique, at its lowest nontrivial

order, as a tool to give necessary conditions for the integrability of large classes of partial
differential equations both in 1+1 and 2+1 dimensions. In particular, it has been shown
that the non-integrability of the resulting multiscale reduction is a consequence of the non-
integrability of the ancestor system. The derivation of the higher order terms of multiscale
expansions has been carried out by Degasperis, Manakov and Santini in [11] and Kodama
and Mikhailov in [22]. In [12], Degasperis and Procesi introduced the notion of asymptotic
integrability of order n by requiring that the multiscale expansion be verified up to order
n of the perturbation parameter. An integrable partial differential equation, as the NLS
equation (1), has an asymptotic integrability of infinite order.

Some attempts to extend this approach to discrete equations have been proposed
[6, 16–18, 23–25]. In [23–25], a multiscale technique for dispersive Z

2 lattice equations
has been developed which is based on the dilation transformations of discrete shift operators.
To our knowledge, the dilation of the lattice has been carried out for the first time by Jordan
[20]. Let us illustrate the basic procedure in the case of a function fn : Z → C depending
only on one discrete index. Let Tn be the shift operator, Tnfn = fn+1 and �n = Tn − 1 be
the difference operator of order 1. The difference of order j in a new discrete variable n′ is
expressed in terms of an infinite number of differences on the lattice of the variable n by means
of the following formula [20]:

�
j

n′fn′ =
j∑

i=0

(−1)j−i

(
j

i

)
fn′+i =

∞∑
i=j

j !

i!

i∑
k=j

ωkSk
i S

j

k�
i
nfn, (9)

where ω is the ratio of the increment in the lattice of the variable n, wrt the variable n′ and
the coefficients Sk

i and Sj

k which are the Stirling numbers of the first and second kinds,
respectively.

The Jordan formula (9) implies that a rescaling of a lattice variable gives rise to nonlocal
results. Therefore, to avoid the presence of infinite sums one needs to truncate the series (9),
namely to introduce a slow-varying condition:

�p+1
n fn = 0, (10)

where p being a positive integer. A more general slow-varying condition has recently been
introduced in [27].

In [23–25], the multiscale analysis has been performed taking into account condition
(10). As a consequence, the reduced discrete equations turned out to be non-integrable even
if the ancestor equation was integrable. However, as shown in [16–18], if p = ∞ the reduced
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equations become formally continuous, and their integrability may be properly preserved by
the multiscale procedure. In this way, multiscale techniques easily fit with both difference–
difference and differential–difference equations. The results contained in [16–18] confirm
a discrete analog of the Zakharov–Kuznetsov claim [32]: ‘if a nonlinear dispersive discrete
equation is integrable then its lowest order multiscale reduction is an integrable NLS equation’.

In this paper, we present the multiscale perturbation analysis of equation (4), thus
extending to the discrete setting the approach used in [11, 12, 22, 32]. The derivation of
the higher order terms in the perturbation expansion will enable us to provide an analytic
evidence of the non-integrability of equation (3). In fact, even if its lowest order reduction is
an integrable KdV-type equation, the higher order reductions exhibit non-integrable behaviors
(see also our recent letter [26] where no details were presented). In contrast, the same
calculations for the case of equation (2) will show that the Ablowitz–Ladik discrete NLS
equation satisfies all the integrability conditions up to the same order considered in the non-
integrable case. This is an indication of its asymptotic integrability of finite order but not a
proof of its integrability as for it we should go up to infinite order.

The paper is organized as follows. Section 2 is devoted to the presentation of some
technical details and basic formulas for the multiscale analysis of equation (4). The main
results of the perturbation analysis will be given in section 3. In the concluding section 4, we
discuss further perspectives of this approach.

2. Basic formulas for multiscale analysis of discrete NLS equations

As for the continuous NLS equation, also for the discrete NLS equation (4), we introduce
amplitude and phase of the function fn(t), namely fn(t) = [νn(t)]1/2exp[iφn(t)]. Therefore,
the discrete NLS equation (4) may be written as the following nonlinear system of the real
differential–difference equations (s = 1 for (2) and s = 0 for (3)):

∂tνn =
(

sσνn − 1

h2

) [√
νnνn+1 sin(φn+1 − φn) +

√
νnνn−1 sin(φn−1 − φn)

]
, (11)

∂tφn = − 1

h2
+

1

2

[
1

h2
+ (s − 2)σνn

][√
νn+1

νn

cos(φn+1 − φn) +
√

νn−1

νn

cos(φn−1 − φn)

]
. (12)

By analogy with the continuous case, see equations (7)–(8); the real fields νn(t) and φn(t) are
expanded around the constant solution fn(t) = exp(−iσ t) in the following way:

νn(t) = 1 +
∞∑
i=1

ε2iν(i)(κ, {tm}m�1), (13)

φn(t) = −σ t +
∞∑
i=1

ε2i−1φ(i)(κ, {tm}m�1), (14)

where ε, with 0 < ε � 1, is the perturbation parameter. The fields ν(i) and φ(i) in
equations (13)–(14) depend on the slow-space variable κ = εζn, ζ ∈ R, and the slow-
time variables tm = ε2m−1t, m � 1. The free parameter ζ will be fixed later so as to obtain a
suitable continuous limit.
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In general, given a function un(t) = v(κ, {tm}m�1), we expand un±1(t) and ∂tun(t) in
terms of the slow variables κ and {tm}m�1 (see [16, 17] for further details). Let Tn be the shift
operator defined by T ±

n un = un±1. Then we have

un±1 = (
T ±

κ

)εζ
v(κ, {tm}m�1) =

∞∑
i=0

(±εζ δκ)
i

i!
v(κ, {tm}m�1), (15)

with

δκ =
∞∑
i=1

(−1)i−1

i
�i

κ , �i
κ = (Tκ − 1)i (16)

and

∂tun =
∞∑
i=1

ε2i−1∂ti v(κ, {tm}m�1). (17)

If un is a slow-varying function of order p, see equation (10), we can truncate the infinite series
in equation (16). In such a case, the δκ operators reduce to polynomials in the �κ operators
of order at most p. Hereafter, we shall assume that p = ∞ and the δκ operators are formal
differential operators.

Taking into account expansions (13)–(14) and equations (15) and (17), we have the
following formulas for the shifts of the functions νn(t) and φn(t):

νn±1 = 1 +
∞∑

j=2

εj

[j/2]∑
i=1

(±ζ δκ)
j−2i

(j − 2i)!
ν(i)(κ, {tm}m�1), (18)

φn±1 = −σ t +
∞∑

j=1

εj

[(j+1)/2]∑
i=1

(±ζ δκ)
j−2i+1

(j − 2i + 1)!
φ(i)(κ, {tm}m�1), (19)

and their time derivatives,

∂tνn =
∞∑

j=2

ε2j−1
j−1∑
i=1

∂ti ν
(j−i)(κ, {tm}m�1), (20)

∂tφn = −σ +
∞∑

j=1

ε2j

j∑
i=1

∂ti φ
(j−i+1)(κ, {tm}m�1). (21)

3. Main results

The multiscale analysis of the system of the real differential–difference equations (11)–(12) is
carried out by inserting the formal expansions (13)–(14) and (18)–(21) into equations (11)–(12)
and by requiring that the resulting equations be satisfied at all orders in ε.

The lowest non-trivial order corresponds to ε2. It gives

ν(1) = −σ∂t1φ
(1).

From this point onwards, all results will only be presented for the phase functions
φ(i), i � 1, since any ν(i), i > 1, is obtained from the even perturbation orders and may
be expressed in terms of the φ(j) s with j � i and their derivatives.
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At order ε3 we get

(
∂2
t1

− c2δ2
κ

)
φ(1) = 0, c = ±ζ(σ − sh2)1/2

h
.

As c has to be real, our multiscale analysis is performed only for σ = 1. Moreover, we choose
ζ = h, so that c = ±(1 − sh2)1/2 remains finite as h → 0. Therefore, the asymptotically
bounded solution of the resulting equation at this order is given by φ(1) = φ(1)(x, {tm}m�2)

with x = κ − ct1.
At order ε5, the no-secular term condition implies

(
∂2
t1

− c2δ2
κ

)
φ(2) = 0, so that

φ(2) = φ(2)(x, {tm}m�2). At this same order, the evolution equation for φ(1) wrt the slow
time t2 reads

∂t2φ
(1) = K2[φ(1)], K2[φ(1)] = α1∂

3
xφ(1) + α2(∂xφ

(1))2, (22)

with

α1 = c

24
[3 − (3s + 1)h2], α2 = sh2 − 3

4
.

Equation (22) is a potential KdV equation and K2
[
φ(1)

]
is the second flow of the integrable

hierarchy associated with the potential KdV equation. A necessary condition for the
integrability of the system (11)–(12) is that its multiscale reductions provide the integrable
evolution equations (j � 3):

∂tj φ
(1) = Kj [φ(1)] = βj

∫ x

duLj−1 [
∂2
uφ(1)

]
, (23)

where L is the recursive operator associated with the KdV hierarchy,

L [f (x)] = ∂2
xf (x) − ∂xφ

(1)

α1
f (x) − ∂2

xφ(1)

2α1

∫ x

du f (u),

and the βj s are the real coefficients to be fixed.
According to a general procedure for the multiscale analysis of the partial differential

equations [10–12], we now assign a formal degree to the x derivatives of the functions φ(j):

deg
(
∂�
xφ

(j)
) = � + 2j − 1, � � 0,

and define Pn as the vector space spanned by the products of all derivatives ∂�
xφ

(j) with total
degree n. We denote by P(r)

n ⊂ Pn the subspace spanned by those products of derivatives
∂�
xφ

(j) with j � r .
After caring for secularities, the order ε7 yields φ(3) = φ(3)(x, {tm}m�2) and the following

non-homogeneous evolution equation for the field φ(2) wrt the slow time t2, depending on φ(1)

and its derivatives:

∂t2φ
(2) − α1∂

3
xφ(2) − 2α2∂xφ

(1)∂xφ
(2) = −∂t3φ

(1) + α3
(
∂2
xφ(1)

)2
+ α4(∂xφ

(1))3

+ α5∂xφ
(1)∂3

xφ(1) + α6∂
5
xφ(1), (24)

where

α3 = h2[16h2s − 5(1 + 3s)] + 7

64
, α4 = ch2(1 + 7s)

12
,

α5 = h2[16h2s − 3(3 + s)] − 3

48
, α6 = −c[h4(15s + 1) + 30h2(s − 1) − 15]

1920
.

Substituting equation (23) with j = 3 into equation (24) and fixing β3 = −α6 in order to
remove residual secularities, equation (24) reduces to the following evolution equation for the
field φ(2) wrt the slow time t2:

∂t2φ
(2) − K ′

2[φ(1)]φ(2) = f (t2), (25)

6
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where K ′
j [φ(1)]ψ is the Fréchet derivative of the flow Kj [φ(1)] along the direction ψ ,

K ′
j [φ(1)]ψ = d

dr
Kj [φ(1) + rψ]

∣∣∣∣
r=0

.

In equation (25), the forcing term f (t2) is a well-defined element of P(1)
6 , dimP(1)

6 = 3,
namely a linear combination of three independent differential monomials (see the appendix,
equation (A.3)), with known coefficients which are the polynomial functions of h.

Now the request for the integrability of (11)–(12) implies the existence of the following
evolution equation for the field φ(2) wrt the slow time t3:

∂t3φ
(2) − K ′

3(φ
(1))φ(2) = f (t3), (26)

where f (t3) ∈ P(1)
8 , dimP(1)

8 = 6 (see the appendix, equation (A.4)). Hence, the following
compatibility condition must hold:

{∂t3 − K ′
3[φ(1)]}f (t2) = {∂t2 − K ′

2[φ(1)]}f (t3). (27)

Such a condition allows us to express the coefficients of the polynomial f (t3) in terms of
those of f (t2), and it does not impose any further constraint on the coefficients of f (t2) (see
the appendix, equation (A.5)). As in our case, this condition is satisfied, we conclude that the
nonlinear system (11)–(12) has an asymptotic integrability of order 7 irrespective of the value
of s.

The next perturbation order, that is ε9, gives rise to a bifurcation between the non-
integrable (s = 0) and the integrable cases (s = 1). For the sake of clarity, we will study
separately the two cases.

• The case s = 0. At the order ε9, the resulting equations provide the evolution of the field
φ(3) wrt the slow time t2. This is given by an integro-differential equation. To reduce it
to a purely differential equation, we introduce the fields ϕ(j) = ∂xφ

(j). Taking care of
secularities and taking into account that φ(1) evolves wrt the slow time t4 according to
equation (23) with j = 4, we get φ(4) = φ(4)(x, {tm}m�2) and

∂t2ϕ
(3) − H ′

2[ϕ(1)]ϕ(3) = g(t2), (28)

where H ′
j [ϕ(1)]ψ is the Fréchet derivative along ψ of the j th KdV flow Hj [ϕ(1)] =

∂xKj [ϕ(1)]. Here g(t2) is a known element of the space P(2)
9 , dimP(2)

9 = 14 (see the
appendix, equation (A.7)). The evolution equation of ϕ(3) wrt the slow time t3 takes the
form

∂t3ϕ
(3) − H ′

3[ϕ(1)]ϕ(3) = g(t3), (29)

where the coefficients of g(t3) ∈ P(2)
11 , dimP(2)

11 = 31, are determined by requiring the
compatibility condition

{∂t3 − H ′
3[ϕ(1)]}g(t2) = {∂t2 − H ′

2[ϕ(1)]}g(t3). (30)

Equation (30) is a necessary condition for the integrability of the system (11)–(12) with
s = 0. In this case, only 9 out of the 14 coefficients of g(t2) are independent. Thus, we
have five integrability conditions (see the appendix for further details). It turns out that the
obtained constraints on the polynomial g(t2) are not satisfied by the coefficients computed
in equation (28). Therefore, the system (11)–(12) with s = 0, namely the discrete NLS
equation (3), does not fulfil the necessary conditions assuring its integrability.

7
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• The case s = 1. In this case, the resulting equations are purely differential and one can
remain within the potential KdV hierarchy. Taking care of secularities and taking into
account that φ(1) evolves wrt the slow time t4 according to equation (23) with j = 4, we
get φ(4) = φ(4)(x, {tm}m�2) and

∂t2φ
(3) − K ′

2[φ(1)]φ(3) = h(t2), (31)

where h(t2) is a known element of the space P(2)
8 , dimP(2)

8 = 11. The evolution equation
of φ(3) wrt the slow time t3 takes the form

∂t3φ
(3) − K ′

3[ϕ(1)]φ(3) = h(t3), (32)

where the coefficients of h(t3) ∈ P(2)
10 , dimP(2)

10 = 24, are determined by requiring the
compatibility condition

{∂t3 − K ′
3[φ(1)]}h(t2) = {∂t2 − K ′

2[φ(1)]}h(t3). (33)

In such a case, it turns out that all the constraints imposed by (33) on the 11 coefficients
of the polynomial h(t2) are satisfied by the coefficients computed in equation (31) (see the
appendix for further details). This proves that the system (11)–(12) with s = 1, namely
the discrete NLS equation (2), has an asymptotic integrability of order 9. Actually, since
the discrete NLS equation (2) is known to be integrable, its asymptotic integrability should
be of order infinite.

The above results may be summarized in the following proposition.

Proposition 1. The nonlinear differential–difference equation

i∂tfn +
fn+1 − 2fn + fn−1

2h2
= |fn|2fn,

is non-integrable. In particular, its multiscale reduction, carried out by using the formal
expansions (13)–(14) and (18)–(21), shows that it has an asymptotic integrability of order 7.

The differential–difference Ablowitz–Ladik equation,

i∂tfn +
fn+1 − 2fn + fn−1

2h2
= |fn|2 fn+1 + fn−1

2
,

has an asymptotic integrability of order 9. (Actually its asymptotic integrability should be of
order infinite since it is known to be integrable.)

4. Concluding remarks

The present paper has been devoted to the derivation of higher order terms of the multiscale
perturbation of discrete NLS equations around the constant equilibrium solution. This enabled
us to study the asymptotic integrability of equations (2)–(3), thus proving that the discrete
NLS equation (3) is non-integrable. Such a result has been already established in [26], but
a detailed presentation of the integrability conditions appears for the first time in the present
paper. Moreover, we have also investigated the asymptotic integrability of the Ablowitz–Ladik
discrete NLS equation (2).

We note that the obtained results can also be used to construct the approximate soliton
solutions of the discrete NLS equations (2)–(3). They will be expressed in terms of the
solutions of the continuous equations belonging to the KdV and potential KdV hierarchies.
More precisely, the solutions of the lowest order term of the multiscale expansion of (2)–(3)
will be expressed in terms of a soliton solution of the potential KdV equation.

8
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It is worth noting that the presented discrete multiscale technique fits with both
differential–difference and difference–difference equations. Therefore, it can be used to
investigate the asymptotic integrability of a large class of discrete dynamical systems. The
method turns out to be a useful analytic tool whenever one has to deal with a discrete equation
whose integrability is not established yet.

As a future work, we plan to investigate the asymptotic integrability of the following
differential–difference equations [7]:

∂tfn +
fn+1 − 2fn + fn−1

2h2
= fn + g(fn−1, fn, fn+1),

withg being a homogeneous polynomial of degree 3 and [21]

∂tfn +
fn+1 − 2fn + fn−1

2h2
= σfn|fn|2

1 + α|fn|2 ,

a saturable discrete NLS equation which admits exact solutions.

Appendix. The integrability conditions for the potential KdV and KdV hierarchies

This appendix is devoted to the presentation of the integrability conditions for the potential
KdV and KdV hierarchies we used in our derivation in section 3. Thus, we shall use the same
notation.

The potential KdV hierarchy. The integrable hierarchy of the potential KdV equation
is given in equation (23). The quantities Kj [φ(1)] and their corresponding linearizations
K ′

j [φ(1)]ψ , for j = 2 and j = 3, read (here ∂ = ∂x):

K2[φ(1)] = α1∂
3φ(1) + α2(∂φ(1))2, (A.1)

K3[φ(1)] = β3

{
∂5φ(1) +

5α2

3α1

[
2α2

3α1
(∂φ(1))3 +

(
∂2φ(1)

)2
+ 2∂φ(1)∂3φ(1)

]}
, (A.2)

and

K ′
2[φ(1)]ψ = α1∂

3ψ + 2α2∂φ(1)∂ψ,

K ′
3[φ(1)]ψ = β3

{
∂5ψ +

10α2

3α1

[
∂φ(1)∂3ψ + ∂2φ(1)∂2ψ +

α2

α1
(∂2φ(1))2∂ψ + ∂3φ(1)∂ψ

]}
,

where α1, α2andβ3 are the real coefficients (in our case they are polynomial functions of the
parameter h).

The non-homogeneous terms f (t2) ∈ P(1)
6 , f (t3) ∈ P(1)

8 , given in equations (25) and (26),
respectively, are

f (t2) = a1(∂φ(1))3 + a2∂φ(1)∂3φ(1) + a3(∂
2φ(1))2, (A.3)

f (t3) = b1∂φ(1)(∂2φ(1))2 + b2∂φ(1)∂5φ(1) + b3∂
2φ(1)∂4φ(1)

+ b4(∂φ(1))4 + b5(∂φ(1))2∂3φ(1) + b6(∂
3φ(1))2. (A.4)

9
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The compatibility condition (27) implies the following algebraic relations between the
coefficients a1, a2, a3 and b1, . . . , b6:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

9α2
1b1 = 5β3 [9a1α1 + 2 (a2 + 3a3) α2] ,

3α1b2 = 5β3a2,

3α1b3 = 5β3 (a2 + 2a3) ,

54α3
1b4 = 5β3α2 (27a1α1 − a2α2) ,

9α2
1b5 = 5β3 (9a1α1 + 5a2α2) ,

3α1b6 = 5β3 (a2 + a3) .

(A.5)

The system (A.5) allows us to express bi s as functions of ai s without requiring any constraints
on the latter ones. This means that the compatibility condition (27) is satisfied for any a1, a2, a3

provided that (A.5) is fulfilled.
The non-homogeneous terms h(t2) ∈ P(2)

8 , h(t3) ∈ P(2)
10 , defined in equations (31) and (32),

respectively, are quite long, since dimP(2)
8 = 11 and dimP(2)

10 = 24. In order to present the
integrability conditions imposed by the compatibility equation (33), it is sufficient to note only
the expression of h(t2). It reads

h(t2) = c1(∂
3φ(1))2 + c2∂

2φ(1)∂4φ(1) + c3∂φ(1)
x ∂5φ(1) + c4∂φ(1)

(
∂2φ(1)

)2

+ c5(∂φ(1))2∂3φ(1) + c6(∂φ(1))4 + c7∂φ(1)∂3φ(2) + c8∂
2φ(1)∂2φ(2)

+ c9∂
3φ(1)∂φ(2) + c10(∂φ(1))2∂φ(2) + c11(∂φ(2))2. (A.6)

The compatibility condition (33) allows one to express the 24 coefficients of h(t3) in terms
of those of h(t2) (these algebraic relations are easy to derive but rather cumbersome so they
are not presented here) and the following three algebraic constraints involving the coefficients
c1, . . . , c11 and the coefficients a1, a2, a3, α1, α2 previously defined. The obtained necessary
integrability conditions read

c6 =
[
27a1 (a2 + 4a3) α1 − (

37a2
2 + 46a2a3 + 12a2

3

)
α2

]
c11

108α2
1α2

+
[(17a2 + 18a3) α2 − 27a1α1] c8

108α2
1

+
[(3a2 − 8a3) α2 − 3a1α1] c9

36α2
1

+
(18c2 − 24c1 − 55c3) α2

2

54α2
1

+
(13c5 − 3c4) α2

18α1
,

c7 = a2c11

α2
,

c10 = 3a1c11

α2
.

The KdV hierarchy. For the integrable hierarchy of the KdV equation, we have

H2[ϕ(1)] = α1∂
3ϕ(1) + 2α2ϕ

(1)∂ϕ(1),

H3[ϕ(1)] = β3

{
∂5ϕ(1) +

10α2

3α1

[
α2

α1

(
ϕ(1)

)2
∂ϕ(1) + 2∂ϕ(1)∂2ϕ(1) + ϕ(1)∂3

]}
,

10
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and

H ′
2[ϕ(1)]ρ = α1∂

3ϕ(2) + 2α2(ρ∂ϕ(1) + ϕ(1)∂ρ),

H ′
3[ϕ(1)]ρ = β3

{
∂5ρ +

10α2

3α1

[
ϕ(1)∂3ρ + 2∂ϕ(1)∂2ρ +

(
2∂2ϕ(1) +

α2

α1
(ϕ(1))2

)
∂ρ

+

(
2α2

α1
ϕ(1)∂ϕ(1) + ∂3ϕ(1)

)
ρ

]}
.

The above expressions are obtained by differentiating wrt x the corresponding expressions
given in equations (A.1)–(A.2) and setting ϕ(1) = ∂xφ

(1), ρ = ∂xψ .
The non-homogeneous terms g(t2) ∈ P(2)

9 , g(t3) ∈ P(2)
11 , defined in equations (28) and (29),

respectively, are quite long, since dimP(2)
9 = 14 and dimP(2)

11 = 31. In order to present the
integrability conditions imposed by the compatibility equation (30), it is sufficient to write
down only the expression g(t2). It reads

g(t2) = d1∂
2ϕ(1)∂3ϕ(1) + d2∂ϕ(1)∂4ϕ(1) + d3ϕ

(1)∂5ϕ(1) + d4(∂ϕ(1))3

+ d5ϕ
(1)∂ϕ(1)∂2ϕ(1) + d6(ϕ

(1))2∂3ϕ(1) + d7(ϕ
(1))3∂ϕ(1) + d8ϕ

(1)∂3ϕ(2)

+ d9∂ϕ(1)∂2ϕ(2) + d10∂
2ϕ(1)∂ϕ(2) + d11ϕ

(2)∂3ϕ(1) + d12(ϕ
(1))2∂ϕ(2)

+ d13ϕ
(1)ϕ(2)∂ϕ(1) + d14ϕ

(2)∂ϕ(2). (A.7)

The compatibility condition (30) allows us to express 31 coefficients of g(t3) in terms of those of
g(t2) (these algebraic relations are easy to derive but rather cumbersome and we do not present
them here) and the following 5 integrability conditions involving the coefficients d1, . . . , d14

and the coefficients a1, a2, a3, α1, α2 previously defined:

d7 =
[
9a1 (12a3 + 5a2) α1 − (

45a2
2 + 88a2a3 + 12a2

3

)
α2

]
d14

54α2
1α2

+
[(3a2 − 8a3) α2 − 3a1α1] d10

9α2
1

+
2 [(21a3 + 4a2) α2 − 9a1α1] d9

27α2
1

+
(9d5 + 8d6 − 24d4) α2

9α1
− 2 (12d1 − 30d2 + 85d3) α2

2

27α2
1

,

d8 = a2d14

2α2
,

d11 = d10 − d9 +
a2d14

2α2
,

d12 = 3a1d14

2α2
,

d13 = 3a1d14

α2
.
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